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When a contaminant molecule is released in a laminar flow in a straight tube i ts  
motion differs from that of the fluid particle with which it initially coincided 
because of its random motion, whose intensity is measured by the molecular 
diffusivity K .  For T = Kt/a2 2 0.25, where t is the time after release and a is a 
length characteristic of the cross-section, the statistics of its motion can be deter- 
mined in the way described by Taylor (1953), Aris (1956) and Chatwin (1970). 
However, in many applications, including blood flow, the values of T which are 
attainedare muchsmaller, and the purpose of this paper is to present first approxi- 
mations for T < 1 to some of the statistics measuring the deviations between the 
motion of the molecule and that of the fluid particle with which it initially coin- 
cided. To obtain these a technique due to Saffman (1960) is used for molecules 
released well away from the tube wall, and an extension of the same technique is 
used for molecules released near the tube wall. It is shown how the results can be 
used to describe the initial stages of dispersion of a cloud of contaminant mole- 
cules distributed arbitrarily over the cross-section in any laminar flow, steady or 
unsteady. Comparisons with some exact results for steady Poiseuille flow in a 
circular tube confirm that the approximations are formally correct, but show that 
in certain cases their practical use is limited to very small values of T, because of 
the high coefficients of the first two terms neglected in deriving the approxima- 
tion. 

1. Introduction 
Consider a molecule of passive contaminant released at t = 0 in fluid flowing 

laminarly through a straight tube. Let the speed of the molecule in the direction 
of the axis at time t be U(t ) .  Now U ( t )  is not equal to V(t ) ,  the longitudinal speed 
of the fluid particle with which the molecule is instantaneously coincident, be- 
cause the molecule has a random component of speed q(t) due to its collisions with 
other molecules. Thus, following Saffman (1960), 

U ( t )  = V ( t )  +q(t). 

It is important to realize that, like q(t), V ( t )  is also a random function of time 
for, because of the random lateral motions which the molecule undergoes, it  
coincides, in an unpredictable way, with different fluid particles at different times. 
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By the definition of a fluid particle the ensemble average of q(t), that is the 
average over all realizations of the molecular motion, is zero for all t .  Thus, de- 
noting such an average by angle brackets, 

The value of ( U ( t ) )  depends of course on the initial position of the contaminant 
molecule, since this fixes the velocity of the fluid particle with which it initially 
coincides. 

To follow this point further consider the specific case of Poiseuille flow in a 
circular tube of radius a, and suppose that the molecule is released from (xo, yo, zo) 
at t = 0, where y = x = 0 is the tube axis and x measures distance along the axis. 
Then 

where, throughout this paper, V , ( t )  denotes the velocity at time t of the fluid 
particle with which the molecule initially coincided, and ;i2 is the discharge velo- 
city. In  unsteady laminar flows V, ( t )  depends on time as the notation suggests, 
but it is not random. Here of course it is constant. 

It is not true, even for this simple case of steady flow, that (V( t ) )  = V,( t ) ,  
although such a result might, at  a superficial glance, be expected. For consider a 
molecule released from a point like A in figure 1 for times t satisfying 

( U ( 0 ) )  = ( V ( 0 ) )  = V,(O)  = 2ii(l-y;/a2-z3a2), (1.3) 

a - (yi + zi)* B ( ~ t ) ) ,  (1.4) 

where K is the molecular diffusivity. Provided (1.4) is satisfied the walls play no 
part in the random motion of the molecule, which is therefore subsequently as 
likely to be nearer the wall than A as it is to be further away. This is indicated by 
the arrows in the figure. But because of the curvature of the velocity profile the 
molecule suffers a decrease in its longitudinal speed if it moves nearer the wall 
which is larger than the increase if it  moves nearer the axis. Thus, provided that 
(1.4) holds, (V( t ) )  < V, (t) .  On the other hand consider a molecule released from a 
point like B in figure 1 for times t satisfying 

a - (y; + 2%)) 5 (K t )+ .  (1.5) 

For such molecules the tube walls seriously inhibit the motion of molecules nearer 
the wall than B, so that the longitudinal speed of the molecule increases, on the 
average. Thus, provided that (1.5) holds, ( V ( t ) )  > V,( t ) .  

The arguments just given can obviously be applied to many other flows. 
Now the dispersion of a cloud of contaminant molecules along the axis of the 

tube can be described in terms of the statistical properties of the process U(t ) ,  
averaged over the initial positions of the molecules. Such a description is less usual 
than, though ultimately equivalent to, one based on the diffusion equation. The 
arguments given above illustrate how a description of the statistics of the motion 
of an individual molecule can illuminate the physics of the dispersion process. 
In  the remainder of this note further statistical properties of the motion of an 
individual molecule are obtained for various flows, and this leads to a description 
of certain features of a dispersing cloud of molecules. The description applies 
only for times after release which are short compared with that taken for a 
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FIGURE 1.  Sketch illustrating the way in which the motion of a contaminant molecule is 
affected by diffusion in Poiseuille flow. 

molecule to wander over the tube cross-section; i.e. the analysis is restricted to 
times t such that 

Such times are important in many physiologica1 situations (Lighthill 1966) where 
the total time available for dispersion is limited by the length of the vessel, so 
that the now classical theory of Taylor (1953) cannot be applied. 

The techniques to be used in most of this paper are due to Saffman (1960), who 
investigated the effect of molecular diffusivity on turbulent diffusion. However 
it will be shown briefly in the appendix how the results can be obtained by more 
traditional, though longer and less illuminating methods. 

T = Kt/a2 < 1. (1.6) 

2. Dispersion in steady flows, illustrated by Poiseuille flow in a 
circular tube 

from (xo, yo, zb) be X ( t ) .  Then 8 = U ,  so that, using (1.2), 
Let the axial displacement of a contaminant molecule at time t after release 

( X ( t ) >  = s(<V(s))ds .  0 (2.1) 

For a cloud of contaminant molecules, all released at  t = 0 from (xo, yo, zo) ,  
( X ( t ) )  is the axial displacement of the centre of mass of the cloud. The spreading 
of the cloud in the longitudinal direction depends on ( X z ( t ) ) .  Now by (1 .  I ) ,  

dX2/dt = 2 X ( t )  U ( t )  = 2 [ V(8) +q(s) ]  [ V ( t )  + q(t)]  ds, !: 
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For t - s B t,, the mean time between molecular collisions, the processes V and q 
are uncorrelated. Since t, x 10-lOs in air under normal conditions (Jeans 1960, 
p. 49) and is obviously smaller in liquids, in practice (2.2) becomes 

d 
- ( X z ( t ) )  = 2 j' ( V ( s )  V ( t ) )  ds  + 2 (q(s) q( t ) )  ds. 
dt 0 

Now (q(s) q( t ) )  vanishes when t - s 2 t, and it follows that, since in the absence of 
any bulk motion of the fluid the value of d(Xz( t ) ) /d t  must be 2 ~ ,  where K is the 
molecular diffusivity, then 

j: 

(2.3) 1: d 
dt 
- ( X z ( t ) )  = 2 (V(8) V ( t ) )  ds + 2K, 

fort $ t,. Further details of the argument leading to (2 .3)  can be found in Saffman 
(1960), to whom the result is due. 

The determination of ( V(s) )  and (V( s )  V ( t ) )  
Now (V( s ) )  is the average of u(y, z) ,  the steady axial component of the fluid 
velocity, weighted with the probability distribution of the position of the mole- 
cule. That is (Saffman 1960), 

where C(x ,  y, z, sixo, yo, zo) Sx Sy Sz is the probability that a t  time s after release 
from (xo, yo, zo) a marked molecule is in a volume of size 6~6y6z  surrounding 
(2, y, z) .  Thus C is the (suitably normalized) distribution of concentration asso- 
ciated with initial release from (xo, yo, zo).  

Consider fist a case when vo, the distance of the initial position of the molecule 
from the tube wall, and 5 satisfy 

In a circular tube of radius a, vo = a- (yo" +z,")*, so that, with s replacing t ,  
(2 .5)  is the same as (1.4).  When (2 .5)  holds, the tube walls play no part in the 
determination of C, so that for small values of S = Ks/a2 the form of C is (Saffman 
1960) 

70 B (Ks)* .  (2 .5)  

C(x ,  Y,Z, s]xo, Yo, 20)  

Thus the cloud spreads isotropically about the fluid particle initially at the posi- 
tion of release entirely as the result of molecular diffusion. The result for C in 
(2 .6)  is discussed further in Chatwin (1976),  where it is shown how the higher- 
order terms in (2.6) can be related to the deviations of the fluid velocity field from 
uniformity in the neighbourhood of (xo, yo, zo). On expanding u(y,  z )  in a Taylor 
series about (xo, yo, zo) it  now follows from (2 .4)  and (2 .6)  that 

(W) = v, (8) + Kav2u(y,, 20)  [ I +  O(S)l, 

v, (8) = v, (0) = U(Y0,ZO). 

(2.7) 

(2 .8)  

where, for the present case of steady flow, 



Initial development of longitudinal dispersion 37 

Wall 
\ 

FIGURE 2. Definition of axes when the initial position of the molecule is near the wall. 

Note that the difference between { V ( s ) )  and V,(s) is proportional to V2u,  which 
measures the curvature of the velocity profile. Also V2u is negative in unidirec- 
tional steady flows in straight tubes. Thus (2.7), given by Saffman (1960), agrees 
with the argument of 9 1. 

Saffman was concerned with unbounded flows for which (2.7) holds for all 
initial positions. However in flows in a tube, the concern of this note, it  is neces- 
sary to consider initial positions whose distance qo from the tube walls does not 

(2.9) 
satisfy (2.5), but rather 

7 0  5 (KS)*. 

When (2.9) holds, the form of C given by (2.6) is not adequate, since it does not 
satisfy the condition n - VC = 0 at the wall.? However it is obvious that to a first 
approximation the tube wall can be considered plane, so that C can be obtained 
by adding to (2.6) the value of C for release from the image of (xo, yo, zo) in the 
tube wall. For simplicity it is convenient to change axes to those shown in 
figure 2, where 6 = x, 7 measures distance from the tube wall, and g measures 
distance around the tube wall. Then the initial position of the molecule can be 
taken as (Eo, v0,  0) with image a t  (to, -qo ,  0). Thus the form of C is, to highest 
order. 

and (2.10) holds only in 7 2 0. Use of (2.4) now gives 

x [l +O(X*)], (2.11) 

where V,(s) is given by (2.8). The term O(S*) in (2.11) depends in detail on the 
geometry of the tube walls and it has not been found possible to derive a general 
expression for it, valid in all geometries. The function of qO/2(~s)* in square 
brackets is everywhere positive, so that, since (8u/a7)wall > 0, (2.11) predicts that 
{ V ( s ) )  > V, (s) whenever (2.9) holds, again in agreement with the argument in 3 1. 

f It would be of interest to try to  develop the methods of this paper to cover the more 
general boundary condition an. VC + PC = 0 at  the tube wall but it is not clear whether 
this would be a practical proposition, or even tractable. 
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The value of ( V(s)  V ( t ) )  is a function only oft  - s in those cases where V(s)  is a 
stationary random function of s (Taylor 1921; Saffman 1960). Here, however, 
V ( s )  does not satisfy this condition just after release because it is influenced by 
the known initial position. Thus ( V ( s )  V ( t ) )  depends on both s and t and has to 
be determined using the joint probability distribution of the positions of the mole- 
cule a t  s and t .  This joint probability distribution is the probability that the 
molecule is in a neighbourhood of one point, say x', at time s and in the neighbour- 
hood of a second point, say x, a t  time t .  Thus the joint probability distribution is 

where C is defined in (2.6) or (2.10) as appropriate. Then 
C(X', SIX,) C(X, t - SIX'), (2.12) 

(V(s )  V ( t ) )  = /Ju(x') u(x) C(x', sixo) C(x, t - S I X ' )  d3xd3x'. (2.13) 

In  a case when the initial position of the molecule is far from the walls, so that 
(2.5) and (2.6) hold, it  follows from (2.13) that 

( V ( s )  V( t ) )  = u2(yo, 20) + KsV2u2(yo, 20)  + K ( t  - 8) "(Yo, 20)  V2u(?/0, 20)  [I+ W ) 1 .  
(2.14) 

On the other hand, when the molecule is initially near the wall, so that (2.9) and 
(2.10) hold, it  is possible to show after some algebra that ( V ( s )  V ( t ) )  differs from 
(2.14) only in the error term, which is now O(T8). 

Properties of a dispersing cloud 

So far in this paper the discussion has been confined to molecules released from a 
single initial position (xo, yo, zo) .  Now consider the dispersion of a cloud of mole- 
cules initially distributed over the cross-section x = 0 (without loss of generality) 
with density per unit area $"(yo, zo), so that provided P is normalized such that 

//F(Yo, 20) dYodz0 = 1, (2.15) 

P(yo, zo) 6y06zo is the fraction of the molecules whose initial position lies in an 
area 6y06zo containing (yo, zo). (The dispersion of a group of molecules not ini- 
tially all at x = 0 can be obtained from the following results by superposition.) 
Let xg ( t )  and @(t) be the axial displacement of the centre of mass and the longi- 
tudinal variance at time t after release; evidently xg (0) = (r2(0) = 0. 

Assuming that the total number of marked molecules is large enough for the 
averages over the cloud to be practically indistinguishable from the ensemble 
averages, x g ( t )  is the average of ( X ( t ) )  weighted with P(yo, zo) over all (yo, zo),  
where ( X ( t ) )  satisfies (2.1). Thus, using the expression (2.7) for qo satisfying 
(2.5), and the expression (2.11) for qo satisfying (2.9) it  follows that 

where the surface integrals are over the whole cross-section and the line integral 
is round the perimeter of the cross-section. The first term in this expression comes 
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from the f i s t  termsin (2.7) and (2.11), while thesecondand third terms comefrom 
the second terms in (2.7) and (2.11) respectively. On performing the integral with 
respect to 7, in the third term and applying Gauss’s theorem to the line integral, 
i t  follows that 

d%/dt = JJu(Yo, 20)  [%Yo, 20)  +KtVZP(YO, 2011 dyodz,. (2.16) 

(Note that the second term in the previous expression for dxJdt is cancelled 
exactly by one of the terms arising from the application of Gauss’s theorem.) 

Some implications of (2.16) are of interest. First, if F(yo, 2,) is uniform, then 
dxg/dt = U.  In  fact it can be shown that this result holds exactly for all time as 
might be expected, for when F(y,, z,) is uniform the molecules of contaminant 
are distributed uniformly over the cross-section, so that, since they are passive, 
their mean Iohgitudinal velocity, as a group, is the mean longitudinal velocity of 
all fluid molecules, i.e. the discharge velocity U. This means that the tendency of 
contaminant molecules in the bulk of the flow to lag behind the fluid particles is 
exactly balanced, when F is uniform, by the tendency of molecules near the wall 
to move faster than the fluid particles there. When F is not uniform, the two 
opposing effects do not normally cancel. In  particular, if V2F > 0 everywhere, as 
occurs when F increases monotonically (nonlinearly) with distance from the 
centre of the tube to the wall, (2.16) confirms that the centre of mass of the cloud 
moves faster, because of the greater relative importance of the molecules near the 
wall, than the centre of mass of the cloud of fluid particles with which the mole- 
cules initially coincided. A converse result holds when V2F < 0 everywhere. 

Passing now to the longitudinal spread of the cloud, an analysis similar to that 
leading to (2.16), but based on (2.3) rather than (2.1) and (2.14) rather than (2.7) 
and (2.11), gives after integrating with respect to 7, 

d 
dt 11 - ( X 2 ( t ) )  2K + 2t u2(yo, 20) F(yo, 20)  dyo dzo 

To the order of approximation in (2.17) (where terms proportional to tB have not 
been included) no distinctive contribution comes from the region near the wall, 
essentially because 8u2/8y is zero a t  the wall (whereas 8u/i?q, which causes the 
distinctive contribution in the expression for dxg/dt, is not zero). Now u2(t), the 
variance of the cloud in the axial direction, satisfies 

cT2 = ( X 2 )  -((X))2,  

so that, integrating (2.16) and (2.17) with respect to t ,  

r 2 ( t )  k 2Kt + t2 [ j j u 2 F  dy,  dz, - ( S S u F  dy,  d ~ , ) ~ ]  

+ 4 ~ t 3  [ / /[V2u2 + uV%] F dy,  dz, - 3 ( / ] u p  dy ,  dz,) (// uV2Fdy, dzo)] . 

(2.18) 
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The first term in (2.18) is the effect of direct longitudinal molecular diffusion, the 
second term is the variance of the fluid particles initially coincident with the 
molecules and the third term is the highest-order effect of the difference between 
fluid-particle and molecular motion. 

Some details for the case of Poiseuille$ow in a circular tube 

To illustrate the results above return to the case of Poiseuille flow in a circular 
cylinder of radius a, for which the velocity profile is given in (1.3),  viz. 

u(yo,zo) = 2 U ( l  -y;/a"z;/a2). (2.19) 

Although (2 .19)  is simple, it  is realizable in practice and representative of the 
general situation. In order to illustrate the theory it is necessary to consider 
special forms for P(yo, zo),  the initial distribution of contaminant molecules over 
x = 0, so results are presented for three cases A ,  B and C in which P is given by 

l/na2 (case A ) ,  (2.20) 

(2/77a4) (!A + 2;) (case B), (2.21) 

(2/na4) (a2--$ -2;) (mseC). (2.22) 

These represent situations where the initial distribution is uniform (case A ) ,  
increasing monotonically from the axis to the wall (case B )  and decreasing mono- 
tonically from the axis to the wall (case C). Evaluation of the integrals in (2.16) 
and (2 .18)  gives the following results, where 

(2.23) 
In  case A 

, f ~  M T ,  X2 M T2{ i -gT+  ...}; (2 .24)  
in case B 

/AM T ( $ + 4 T +  ...}, X2 M T2{$-vT+  ...I; (2 .25)  
in case C 

,LL z T{$ - 4T + . . .}, (2.26) 

For these three cases the values of ,u and C2 can be determined exactly after some 
lengthy algebra which is summarized in the appendix to this paper. The exact 
results confirm the formal correctness of the approximations (2.24)-(2.26), but 
show also that the coefficients of the terms in T* and T2 [the first two terms 
ignored in the curly brackets in (2.24)-(2.26)] are numerically large, especially 
in cases B and C ,  and especially for C2. 

As far a sp  is concerned the approximation in case A is exact for all values of T, 
whereas, as figure 3 shows, the error in case B (and therefore in ease C) caused by 
using the approximation progressively increases with time, reaching 3-3 yo for 
T = 0.02 and 11.3 yo for T = 0.05. There is an error in all three cases when the 
approximation is used for 2 2 .  For case A,  when the initial distribution is uniform 
over the pipe cross-section, the error increases from 2.6 Yo a t  T = 0-02 to 20.6 % 
at T = 0.05. However in case B (and in case C) significant errors occur for smaller 
values of T than in case A ,  so that there is an error of 8.3 yo at T = 0.01 and an 
error of 21.6 yo a t  T = 0.02. Furthermore in case B (and C) the values in figure 4 
show that these errors are so large that, as far as calculating 2 2  is concerned, the 

,fL = Xg (K/%.Z2), x2 = (a2 - 2Kt) (K/@C&2)2. 

X2 M T2{+ + YT + . . .}. 
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0.03 - 

/ 

/ 
/ / / I 

Case C 

Case A 

0 0.01 0.02 
T 

FIGURE 3. Graphs of /I for cases A ,  B and C. -, exact values; --- , values for fluid 
particles; x , values given by approximations (2.24)-(2.26). Note that in case A all three 
graphs coincide. 

difference between fluid particles and molecules is important only if the terms of 
order T9 and T2 can be added explicitly to the expressions in curly brackets for 
C2 in (2.25) and (2.26). This is not a practical proposition using the methods of 
this paper, for aIthough it is perhaps possible to derive extra terms in the expres- 
sions (2.6) for Cinunbounded space (in the manner outlined by Chatwin, 1976), it  
would be extremely difficult (and prohibitively long) to derive extra terms in the 
expression (2.10) for C near the wall. Note also that the approximation to Xz in 
case B is an underestimate whereas that in case C is an overestimate, so that the 
relatively small errors in the approximation to P in case A result from these 
large errors of opposite sign tending to cancel. These somewhat disappointing 
conclusions about the practical value of the approximations to C2 are not sur- 
prising in view of the well-known singular behaviour of solutions of parabolic 
equations for t = 0 + . 
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f 
/ 

.n I Case A 

X 

0.01 
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0.02 

FIQURE 4. Graphs of Ca for cages A, B and C. -, exact values; - - -, values for fluid 
particles; x , values given by approximations (2.24)-(2.26). 

By means of the principle of superposition, further solutions can be built up 
from those for any two of cases A ,  B and C. For example, denoting cases B and C 
by the appropriate subscripts, the values of ,u and X2 for an initial distribution 
P(yo, zo) = aFB + (1 -a) Fa (where 0 < a Q 1 for F to be everywhere positive) 

,u = a,uB +(l-a)ruc, (2.27) 
satisfy 

c2+,u2 =a(Z%+&) +(l--a)(Z$+,u2,). 
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FIGURE 5. Errors in using the approximations for various values of u. e,, = 100 (1 

pexaot, ex, = 100 (1 -X2ppprox/~*exMt). The appropriate values are obtained from (2.27). 

(Note that it is Z2 +p2, not C2, which is a linear function of P.) In  figure 5 the 
percentage errors caused by using the approximations developed in this paper 
are plotted for two values of T and various values of a. It will be noted that the 
errors are greatest when a = 1 (case B)  and when a = 0 (case C), and smallest 
near a = 0.5 (case A ) .  Detailed calculations show that the first term neglected 
in the approximation for C2 has a zero coefficient when a = 0.395, and this is 
consistent with the graph. 

The approximations to both p and 2 2  are in all cases accurate to within 8 yo for 
T 5 0.01. Such low values of T are important in applications; for example blood 
passes right through the human aorta in times such that T x 5 x Neverthe- 
less the main interest of the methods and results of this paper may be theoretical 
since for such low values of T the differences between fluid particle and contami- 
nant molecule motion predicted by the approximations are rather small. 

3. An extension to unsteady unidirectional flows 
Although blood flow in the aorta has been cited above as an example where 

very small values of T are important, the flow is unsteady, so that the methods 
and results of $2  cannot be applied. In this section it will be shown how the pre- 
vious arguments can be extended to cover unsteady unidirectional laminar 
flows, although no account is taken of secondary flows. 

For simplicity consider the specific case of flow through a straight tube with 
axial velocity u(y, z )  cos wt, where y and z are co-ordinates in the cross-section, as 
in the earlier sections of this paper. More general flows can be dealt with by natural 
extensions of the techniques to be described. Now many of the results in the 
previous sections hold for unsteady flows without modification and, in particular, 
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expressions (2.1) and (2.3) remain true; in these { X ( t ) )  and ( X z ( t ) )  are expressed 
in terms of ( V ( s ) )  and ( V ( s )  V(t)) .  By definition V(s)  is the velocity (at times) of 
the fluid particle with which the contaminant molecule coincides at time s. So in 
the unsteady laminar flow being considered (but evidently not in turbulent flow) 
V ( s )  = W(s)  cos us, where W ( s )  is the value of u(y ,  z )  at the instantaneous posi- 
tion of the molecule. Thus 

( V ( s ) )  = ( W ( s ) )  cos ws and { V(s)  V ( t ) )  = ( W ( s )  W ( t ) )  cos ws cos wt, 

where ( W ( s ) )  and ( W(s)  W ( t ) )  can be determined from C and u(y, z )  exactly as 
described in $2. To the order considered in this paper the form of C in unsteady 
laminar flows differs from that in steady flows only because the axial displace- 
ment of the fluid particle with which the contaminant molecule initially 
coincided is u(y,, z,) sin (ws)/w rather than u(y,, z,) s. But because of the homo- 
geneity of the flow in the axial direction the values of ( W ( s ) )  and ( W ( s )  W ( t ) )  
are unaffected by this change, so that, in terms of u(y,  z),  they are given by the 
expressions derived for { V(s ) )  and (V( s )  V ( t ) )  in $ 2. Hence, in the flow considered 
here, the results (2.16) and (2 .17)  is replaced by 

and 

ss Kt 

w 
+-sin 2wt 

+ - COB ot( 1 - cos wt) 

V2u2(y,, z,) F(yo, 2,) dy,dz, 

- V2u2(Yo, z0)l F(Y,,Zo) dYodZ0. (3.2) 

[u(y,, z,) V2u(y0, 2,) 11 2K 
w2 

From these results, those analogous to (2.24)-(2.26) can be obtained by integra- 
tion. In  particular, when the initial distribution of contaminant is uniform over 
the cross-section, so that F is given by (2.20), and when u(y,, z,) satisfies (2.19), 
then (2.24) is replaced by 

,u M T(sin (wt)/wt), 

ZZzT2 {i - (si;;t)2 - - (4 sin ot  - 2wt - sin 2wt )+...,?j (3.3) 
w3t3 

and similar, but more complicated, results hold when F is given by (2.21) and 
(2 .22) .  In  each case it can be verified that the results approach the steady results 
as ot+ 0 (for fixed t ) ,  but results like (3.3) hold for all values of wt provided, as in 
$2, that T 4 1. 
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Appendix. The exact values of the moments 
This appendix outlines the way in which the exact values of p and C2 are 

obtained for the cases considered in detail in $2.  The tube has a circular cross- 
section and the axial velocity satisfies (2.19). Thus C(x ,  y, z, T )  satisfies 

where r2 = y2 + 22, together with the boundary condition 

aC/ar = 0 at r = a. (A 2) 

(A 3) 

In  addition, there is an initial condition which, for present purposes, can be taken 
as 

where P satisfies the normalization condition (2.15). The values ofp and X2 when 
F is uniform and satisfies (2.20) (case A )  are determined by Chatwin (1970) with 
the results 

C(X, y, 270) = 4%) F(Y, z), 

(A 4) p = T ,  

where a, is the nth non-zero root of J1. From (A 5 )  it is not easy to obtain an 
approximation to Z2 for T < 1,  the subject of this paper. However, the method 
used to derive (A 5 )  is the Laplace transformation from which such an approxi- 
mation can be obtained easily, with the result 

The method of obtaining (A 6) is illustrated below. For the moment note that, as 
stated in $ 2 ,  (A 6 )  is consistent with the approximation (2.23). 

Consider now case B, when F satisfies (2.21). Evidently c! is axially symmetric, 
SO that C = C(x, r, T ) .  Define 

= ria, 
and then C, (R,  T )  and en ( R , p )  for each integer n 2 0 by 

(A 7) 

cn (R, = (s) ,+' J:m xnCdx, e , ( R , p )  = som C,e-PTdT. (A 8) 

Equations for the C, are obtained from (A 1 )  in the manner described by Aris 
(1956), and those for the 0, by taking the Laplace transformation defined in 
(A 8). When F satisfies (2.21) the following results are obtained for n = 0 , l  and 2: 

d26, 1 dGo -+--- 
dR2 R d R  

a"(?, -+--.2- 1 d e  p e l  = -2(1-R2)e , ;  
dR2 R d R  

-+--- 
dR2 R d R  
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Also from (A 2 )  it  follows that 

deJdR = 0 at R = 1 .  

The solution of (A 9) which satisfies (A 12) is 

where s = Rpa (A 14) 

and I, and I, are modified Bessel functions. Now xg satisfies, using the normaliza- 
tion condition (2 .15) ,  

xg = &n//Cxrdxdr ,  

so that, from (2 .23)  and (A 8) ,  

p = 2na2 ( y )  Iol RC, dR,  

and on multiplying ( A  10) by R ,  integrating from 0 to 1, and using (A 12) and the 
Laplace transformation of (A 15),  it follows that 

lu A = - 4na2 ( ~ ) / 0 1 R ( l - R 2 ) ( ? o d R .  iia2 

P 

Thus, on substituting (A 13) into (A 16) and integrating, 

Now on expanding I, (p*)/Il (pa) aboutp = 0 it turns out that z l / p 2  - 1/48p 
near p = 0. Also, the zeros of Il  (p*) are simple and on the negative real axis with 
p = -a$, where a,& is the nth non-zero root of 4. Thus, inverting (A 17), 

But as with (A 5 )  this form is not useful for determining p for T < 1.  However for 
large pa, I, (p i ) / I ,  (pa) M 1 + (1 /2pa)  + . . ., so that, inverting (A 17) directly, 

256 3+4T-- 15n* T8+8T2+ ... 

A s  stated in $ 2 ,  this verifies the correctness of the approximation (2 .25)  derived 
in the paper. 

Turning now to u2, note that 

uz = 2n / /z2Cr dr dx - xi, 

so that, from (2 .23)  and (A 8) ,  
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so that on multiplying (A 11) by R, integrating from 0 to 1) and using (A 12) and 
the Laplace transformation of (A 20)) it  follows that 

P P 

By multiplying (A 9) by R and integrating from 0 to 1 it follows that 

A similar procedure can be used to evaluate the second term in (A 21)) and 
although the algebra is long, this is quicker than solving (A 10) for 6, directly. 
Now (A 10) can be written 

where f ( s )  is given explicitly by substituting (A 13) into (A 10). The required 
second term of (A 21) is 

From (A 23) it follows in the manner used several times in this appendix that 

and this can be evaluated explicitly. Also, multiplying (A 23) by s3 and inte- 

and only the last of these terms cannot be determined immediately. However, on 
multiplying (A 23) by do and rearranging, it can be shown that 

so that, on integrating, 

f i l (P4)  = - 4 I 1”’ sIofds .  
P I d P f )  0 

On performing the integrations in (A 2 5 ) )  (A 26) and (A 27) it follows eventually 
that 

(0 E C2+p2). The exact inverse of (A 28) is 
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so that C2 can be determined exactly using (A 18). However to obtain an expres- 
sion useful for T < 1, (A 28) is inverted directly in the manner described follow- 
ing (A 18) to give (using (A 19) for p )  

This verifies the correctness of (2.25) but also shows that the coefficients of 
Tg and T2 are large, as noted in the paper. 

The values of y and C2 +p2 for case C can be obtained immediately from the 
corresponding results for cases A and B, when it is noted from (2.20)-(2.22) that 
F for case C is twice F for case A minus F for case B, and that the equation for 
C is linear. In particular it follows that for T < 1 

(A 31) 

256 

2048 
Z2 zT2 

and, as in cases A and B, these have the properties in the paper. 
From the exact expressions derived in this appendix it can be shown that for 

large T (which means for practical purposes that T must be greater than about 
0-25) the values of y and Z2 are given by 

p = T ,  Z2 z &(T--&) (caseA), 

p M T-A, Z2 z &(T-&) (caseB), 

,u z T+&, C2 z &(T-&) (caseC). 

Thus the results are consistent with the work by Taylor (1953) and h i s  (1956), 
but show that the initial distribution affects the corrections to the leading terms 
predicted in these papers, in agreement with Chatwin (1970). 
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